Constructing a family of probability distributions with Schwarzschild as information metric

Authors

  • Melquisedec M. Gumahad ⋅ PH National Institute of Physics, University of the Philippines Diliman
  • Kevin T. Grosvenor ⋅ PH National Institute of Physics, University of the Philippines Diliman

Abstract

We explore the inverse problem in information geometry. A family of probability distributions with the (Euclidean) Schwarzschild metric as the Fisher information metric is constructed using the method developed by Clingman, Murugan, and Shock and the Fronsdal embedding of Schwarzschild into flat space. We study the fate of the isometries of Schwarzschild under this mapping. We provide a potential connection with a thermodynamic system described by a Hamiltonian in the presence of a gauge field.

Downloads

Issue

Article ID

SPP-2025-PB-10

Section

Poster Session PB (Theoretical Physics, High Energy Physics, Astrophysics)

Published

2025-06-14

How to Cite

[1]
MM Gumahad and KT Grosvenor, Constructing a family of probability distributions with Schwarzschild as information metric, Proceedings of the Samahang Pisika ng Pilipinas 43, SPP-2025-PB-10 (2025). URL: https://proceedings.spp-online.org/article/view/SPP-2025-PB-10.