New solutions to a forced Huxley equation using a family of generalized tanh functions

Authors

  • Jose Luis Paolo S. Domingo ⋅ PH Department of Physics, Ateneo de Manila University
  • Benjamin B. Dingel ⋅ PH Department of Physics and Ateneo Research Institute of Science and Engineering, Ateneo de Manila University, and Nasfine Photonics Inc.

Abstract

The tanh method devised by Malfiet is used to obtain analytic traveling wave solutions to nonlinear partial differential equations (PDEs) by employing a hyperbolic tangent ansatz. One such nonlinear PDE is the Huxley equation that demonstrates the electric behavior of the nerve axon to model nerve-impulse propagation. Previous studies have shown that the use of a Generalized Half-Angle Tanh (g-HATH) ansatz consisting of a family of tanh functions can generate new wave solutions when applied to a forced version of the PDE it is applied to. In this paper, the tanh method using the g-HATH ansatz is applied to the forced Huxley Equation that allows for the derivation of new analytic kink solutions. Comparison of the original and new solutions for different p showed the reducibility of the new solutions to the original when p = 1, while decreasing p results in a decrease in kink wave height and various changes to the wave speed.

Downloads

Issue

Article ID

SPP-2024-PC-06

Section

Poster Session C (Theoretical and Mathematical Physics)

Published

2024-06-25

How to Cite

[1]
JLPS Domingo and BB Dingel, New solutions to a forced Huxley equation using a family of generalized tanh functions, Proceedings of the Samahang Pisika ng Pilipinas 42, SPP-2024-PC-06 (2024). URL: https://proceedings.spp-online.org/article/view/SPP-2024-PC-06.