Machine learning-based automation of COVID-19 screening using clinical dataset

Authors

  • Jezreel Sophia C. Lanuzo Institute of Mathematical Sciences and Physics, University of the Philippines Los Ba˜nos
  • Joverlyn Gaudillo Institute of Mathematical Sciences and Physics, University of the Philippines Los Ba˜nos
  • Ranzivelle Marianne Roxas-Villanueva Institute of Mathematical Sciences and Physics, University of the Philippines Los Ba˜nos
  • Beatrice Tiangco Augusto P. Sarmiento Cancer Institute, The Medical City and National Institutes of Health, University of the Philippines Manila
  • Jason Albia Institute of Mathematical Sciences and Physics, University of the Philippines Los Ba˜nos

Abstract

Fast and effective screening of COVID-19 patients can help decrease its mortality rate. In this study, we employed machine learning methods on clinical datasets for automated COVID-19 screening. The model configuration with a decision tree as the classifier, forward selection as a feature selection method, and six features has 91% precision, 85% accuracy, 92% sensitivity, and 91% F1-score. We also determined the following relevant features identified by the employed feature selection technique that helped screen COVID-19 patients: lymphocytes, chest X-ray label, BMI, PCT, eGFR result, and comorbidity chronic lung disease. This study demonstrates the potential of machine learning models trained on clinical data in classifying COVID-19 patients to help facilitate the screening procedure.

Downloads

Issue

Article ID

SPP-2021-3C-05

Section

Biological and Medical Physics

Published

2021-10-04

How to Cite

[1]
JSC Lanuzo, J Gaudillo, RM Roxas-Villanueva, B Tiangco, and J Albia, Machine learning-based automation of COVID-19 screening using clinical dataset, Proceedings of the Samahang Pisika ng Pilipinas 39, SPP-2021-3C-05 (2021). URL: https://proceedings.spp-online.org/article/view/SPP-2021-3C-05.