Agent-based modeling of the B cell population dynamics during an infection
Abstract
B cells are crucial players in the human immune system which secrete antibodies that can eliminate bacterial antigens. An agent-based model is implemented to study the behaviour between B cell-antigen interactions during a bacterial infection. We have determined that infection in the system occurs when 69% of antigens are eliminated. Cellular lifetime of B cells plays a role in clearing the antigens, exhibiting three distinct phases - the lag phase, exponential growth phase, and the stationary phase. A Gompertz curve fit demonstrates that the B cell population curve mimics a biologically realistic phenomena. Studying the population dynamics of the system shows that B cell population peaks at around 60%-70% of antigens are eliminated, further supporting the determined point of infection.