Image preprocessing with bi-histogram equalization in a supervised classification of radiographs

Authors

  • Vidal Wyatt Magmanlac Lopez ⋅ PH National Institute of Physics, University of the Philippines Diliman
  • Francis N. C. Paraan ⋅ PH National Institute of Physics, University of the Philippines Diliman

Abstract

Convolutional neural network models are known for their effectiveness in solving computer vision problems. These neural networks are designed to extract features from raw data for accurate classification. The objective of this paper is to study the effects of bi-histogram equalization preprocessing on the performance of a convolutional neural network in identifying pneumonia from a chest x-ray image. The model trained with the preprocessed images demonstrated improved accuracy during training and validation of the neural network.

Downloads

Issue

Article ID

SPP-2019-PA-22

Section

Poster Session PA

Published

2019-05-25

How to Cite

[1]
VWM Lopez and FNC Paraan, Image preprocessing with bi-histogram equalization in a supervised classification of radiographs, Proceedings of the Samahang Pisika ng Pilipinas 37, SPP-2019-PA-22 (2019). URL: https://proceedings.spp-online.org/article/view/SPP-2019-PA-22.