Band structure contribution of adsorbed H2 on graphene calculated from molecular orbital projections

Authors

  • Mario Antonio T. Ongkiko ⋅ PH National Institute of Physics, University of the Philippines Diliman
  • Francis N. C. Paraan ⋅ PH National Institute of Physics, University of the Philippines Diliman

Abstract

Density functional theory allows for the first-principles calculation of projected wavefunctions onto orthogonalized atomic wavefunctions. Such calculations can be applied to study the bonding of a molecule onto an adsorbing surface. In particular, these projections allow one to identify the contributions of the adsorbed molecule to the band structure of the whole system. In this paper, we consider a system composed of an H2 molecule adsorbed onto the hollow (H) site of a graphene 3x3 supercell. The adsorbed H2 molecule gives rise to two bands roughly 6 eV on either side of the Fermi energy. These bands may be attributed to the hybridization of the H2 bonding and anti-bonding molecular σ orbitals and the graphene bands.

Downloads

Issue

Article ID

SPP-2018-PA-19

Section

Poster Session A (Materials Science, Instrumentation, and Photonics)

Published

2018-05-25

How to Cite

[1]
MAT Ongkiko and FNC Paraan, Band structure contribution of adsorbed H2 on graphene calculated from molecular orbital projections, Proceedings of the Samahang Pisika ng Pilipinas 36, SPP-2018-PA-19 (2018). URL: https://proceedings.spp-online.org/article/view/SPP-2018-PA-19.