Finite difference scheme for hyperbolic heat conduction with continuous and pulsed heat sources

Authors

  • Agatha De La Torre ⋅ PH National Institute of Physics, University of the Philippines Diliman
  • Cristine Villagonzalo ⋅ PH National Institute of Physics, University of the Philippines Diliman

Abstract

The temperature distribution in a region of a one dimensional (1D) semi-infinite slab as defined by the hyperbolic heat equation, is modelled by utilizing the finite-difference approximation for partial-differential equations. The distribution is observed for both pulsed and continuous heat sources for a homogenous medium. The stability of the numerical scheme is determined via the Von-Neumann stability criteria.

Downloads

Issue

Article ID

SPP-2005-PA-01

Section

Poster Session PA

Published

2005-10-26

How to Cite

[1]
A De La Torre and C Villagonzalo, Finite difference scheme for hyperbolic heat conduction with continuous and pulsed heat sources, Proceedings of the Samahang Pisika ng Pilipinas 23, SPP-2005-PA-01 (2005). URL: https://proceedings.spp-online.org/article/view/SPP-2005-PA-01.