Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field
Abstract
The excitation fluence and magnetic field dependence of terahertz (THz) radiation power from InAs is investigated. At low excitation fluence, an enhancement of the THz-radiation power is observed independent of the magnetic-field direction. As the excitation fluence is increased, a crossover of terahertz radiation mechanism is observed. At excitation fluence above this crossover, the radiation power is either enhanced or reduced depending on the magnetic-field direction. These results are explained by considering the different THz-radiation mechanisms from the InAs surface with or without photoexcited carrier screening.