Comparison of spectral analysis models for feature extraction in word recognition
Abstract
In this paper several speech features that could best represent a set of isolated words are compared. Features are derived from the power spectrum, the spectrogram, and the linear predictive code (LPC). Using a k-nearest neighbor classifier, we have obtained best results of 99.8% for the recognition rate when the features were obtained using LPC coefficients.
Downloads
Issue
Article ID
SPP-2002-2H-03
Section
Image and Signal Processing
Published
2002-10-23
How to Cite
[1]
AJM Licup, MA Flores, EJL Salumbides, and K Karremans, Comparison of spectral analysis models for feature extraction in word recognition, Proceedings of the Samahang Pisika ng Pilipinas 20, SPP-2002-2H-03 (2002). URL: https://proceedings.spp-online.org/article/view/SPP-2002-2H-03.